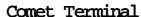


## <u>List of Contents</u>

| 1. | Gene:                  | ral                                                                              | 2  |  |
|----|------------------------|----------------------------------------------------------------------------------|----|--|
|    | 1.1.<br>1.2.           | Example: "Function scheme for Ski Jumping"  Cooperation of the different devices |    |  |
|    | 1.3.                   | Technical Explanation                                                            |    |  |
|    | 1.3.                   | recrimical explanacion                                                           | 3  |  |
| 2  | Devices an necessaries |                                                                                  |    |  |
|    | 2.1.                   | Comet                                                                            | 4  |  |
|    | 2.2.                   | Display Board                                                                    | 4  |  |
|    | 2.3.                   | Personal Computer                                                                | 4  |  |
|    | 2.4.                   | Junction Box                                                                     | 4  |  |
|    | 2.5.                   | Cable                                                                            | 4  |  |
| 3. | Prog                   | grams                                                                            | 5  |  |
|    | 3.1.                   | Points 1                                                                         | 5  |  |
|    | 3.2.                   | Points 2                                                                         | 6  |  |
|    | 3.3.                   | Distance                                                                         | 6  |  |
|    | 3.4.                   | Speed                                                                            | 7  |  |
|    | 3.5.                   | Computer                                                                         | 7  |  |
|    | 3.6.                   | Schanze (Judge for ski jumping)                                                  | 8  |  |
| 4. | Interface              |                                                                                  |    |  |
|    | 4.1.                   | General                                                                          | 9  |  |
|    | 4.2.                   | Comet                                                                            | 9  |  |
|    | 4.3.                   | Display Board                                                                    | 9  |  |
|    | 4.4.                   | Personal Computer (PC)                                                           | 9  |  |
|    | 4.5.                   | Interface protocol                                                               | 0  |  |
|    |                        | 4.5.1. Data from the Comet                                                       | .1 |  |
|    |                        | 4.5.2. Data from the Personal Computer (PC)1                                     | 2  |  |
|    |                        | 4.5.3. Orders to program the input fields for the program "Computer"             |    |  |


Timer S4 manual copyright by: ALGE TIMING AUSTRIA




## 1. General

## 1.1. Example: Function scheme for Ski Jumping

7 Comet Terminal, PC-Host, 9 Display Boards, Junction Box





Terminal Page 3



## 1.2. Cooperation of the different devices:

The Comets are used as terminals to input data and show information. The data you can input depend on the program you choose. We offer programs to input points (2 programs), distance, speed, and points ski jumping. If you need other input formats you can program the display of your need in the program "Computer". When using more than one Comet (maximum 10) you need the Junction Box. You can transfer data form a Comet to the PC and form the PC to any Comet. The PC collects all data, calculates the results and controls the display board.

#### Example: Operation during a Ski Jumping Event

#### 1. Speed of the Jumper (Comet 7):

A Comet with two photocells measures the speed and sends the information to the PC. The PC makes the display board to show the speed.

#### 2. Judgement of the jumper (Comet 1 to 5):

Each judge judges the jump (jump, landing, and fall). The points sends the Comet to the PC. The PC makes the display boards to show the points. Each judge has a Comet.

#### 3. Width of a jump (Comet 6):

Input the measured width into the Comet and send it to the PC. The PC makes the display board to show the width.

## 4. Final result for the jump (PC):

From the points of each judge and the width it calculates the total points and rank. The PC shows the result on a display board.

#### 1.3. Technical Explanation:

The PC and the Comets communicate always together. This guarantees the best data safety. The communication works with a RS 232c interface (V.24).

The Computer and the Comets work as ring token. For the communication between the devices we use a special software protocol (see page 10, point 4.5).

The supply for the different Comet can come form the Junction Box (with charger NLC4) or form internal batteries.



Page 4

#### 2 Devices and Necessaries

#### 2.1. Comet:

The Comet is a microcomputer that works as input -/output device with the program TERMINAL. For each place from where you input points, you need a separate Comet (max. 10 Comet).

## 2.2. Display Board:

Shows points, width, speed, results, etc. (any numeric figures). The display board is controlled be a PC.

## 2.3. Personal Computer (PC):

The PC is the master. It needs two RS 232c interfaces as well as two floppy discs or a floppy disc and a hard disc. The PC software drives the interfaces and calculates the results.

## 2.4. Junction Box:

The Junction Box is the centre of the network where all Comet and the PC are plugged. The Junction Box has numbers form 1 to 10 to plug the Comet. You must plug the first Comet at socket 1, the second at 2, etc.

If you do not use 10 Camet it is necessary to plug after the last Camet the end-plug.

e.g.: The ski jumping example on page 3 uses 7 Comet plugged at the Junction Box. Now you have to connect the end-plug on socket 8.

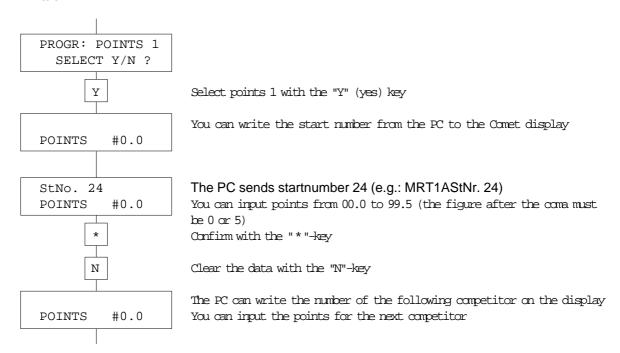
#### 2.5. Cable:

Comet - Junction Box: 065-01
PC (25pin) - Junction Box: 072-02
PC (9pin) - Junction Box: 071-02
Comet - Photocell 001-10

PC - Display Board: data cable with two wires

## 3 Programmes

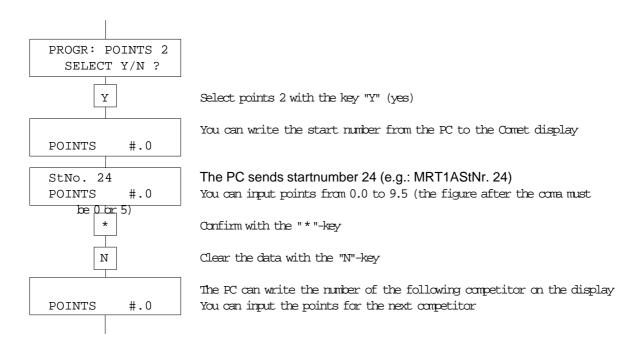
Using the TERMINAL program you can choose between different sub programs:


Points 1 input of points with the following format: ##.#
Points 2 input of points with the following format: #.#
Distance: input of width with the following format: ###.#

- Speed: speed measurement with two photocells or input of speed

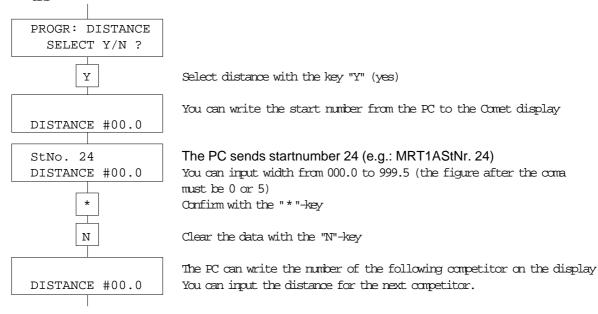
Computer: create your own input fields in the CometSchanze: input of points for ski jumping judges

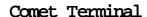
#### 3.1. Points 1:


- Input of points form 00.0 to 99.5
- Input of 0 or 5 is possible for the figure after the cama
- Turn the Terminal program of the Comet on and press "N" until the display shows the following






#### 3.2. Points 2:

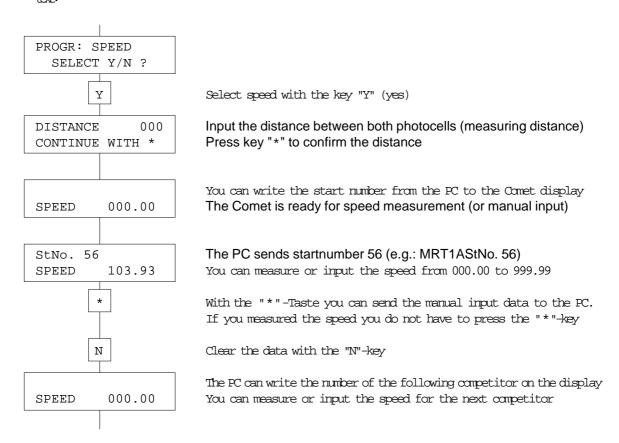

- Input of points form 0.0 to 9.9
- Turn the Terminal program of the Comet on and press "N" until the display shows the following text:



#### 3.3. Distance (width):

- Width form 000.0 to 999.5
- Input of 0 or 5 is possible for the figure after the coma
- Turn the Terminal program of the Comet on and press "N" until the display shows the following text:






Page 7

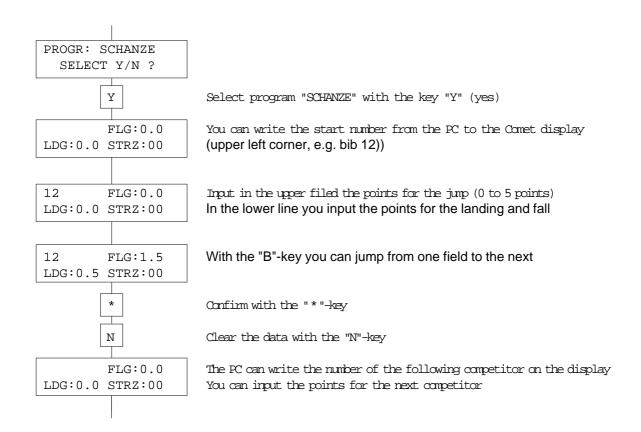


## 3.4. Speed:

- Speed measurement or manual input of speed
- Measurement form 000.00 to 999.99
- Measurement in km/h (kilometre per hour)
- Turn the Terminal program of the Comet on and press "N" until the display shows the following



#### 3.5. Computer:


- You can make up to five input fields or text
- After loading the input fields and text you can work as in the other programs
- With the key "B" you jump with the cursor from one field to the next
- The commands to program the Comet you can see on page 10, point 4.5.



Page 8

## 3.6. Schanze (Ski Jumping Judges)):

- Program for ski jumping judges
- Three input fields are available (FIG = jump, IDG = Landing, SIRZ = fall)
- For the jump is a input of 0.0 up to 5.0 possible
- For the landing is an input of 0.0 up to 4.0 possible
- For a fall is an input of 0 up to 10 possible
- Jump with the "B" key from one field to the next
- Clear with the "N" key all fields and reset them to 0





## 4. Interface

## 4.1. General:

All Comet and the PC are connected in a ring system. They are connected through a serial V.24 (RS 232c) interface.

The different Comet communicate with the PC through a special protocol.

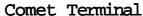
The PC is always the master.

## 4.2. Comet:

After you turn the Comet on it adjusts its interface as follows:

2400 Baud, 1 start bit, 8 ASCII Bit, 1 stop bit, no Parity, hardwarehandshake (RIS, CIS), fullduplex

## 4.3. Display Board:


RS 232c interface (only RXD reception)

2400 Baud, 1 start bit, 8 ASCII bit, 1 stop bit, no parity

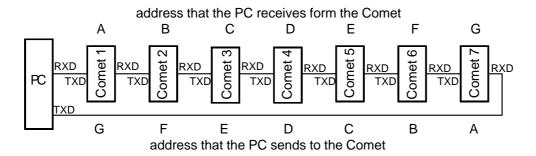
## 4.4. Personal Computer (PC):

The PC needs two serial RS 232c interfaces:

- one serial interface for the data communication with the Comet
- one serial interface to control the display boards



et Terminal Page 10

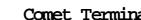

## 4.5. Interface Protocol:

The data transmission in the ring system works through a RS 232c interface with the following data:

2400 band, 1 start bit, 8 ASCII bit, 1 stop bit, no parity, hardwarehandshake (RIS, CIS)

Every data string ends with a Carriage Return (OD Hex.). There are no control signs.

Example: Ring net with PC and 7 Comet

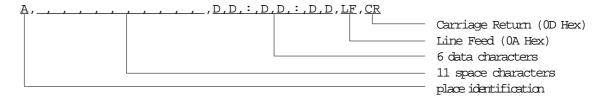



Each Comet sends the address A. When the data pass the next Comet the A changes to B, B to a C, etc.

If a data sting from Comet 3 arrives at the PC it makes in Comet 2 a B out of the A and in Comet 1 a C out of the B. The PC receives C and knows the Data are from Comet 3.

From the configuration above you receive the following addresses:

#### the PC receives: the PC sends: from Comet 1: A to Comet 1: G = 6 (= 7 - 1)from Comet 2: B to Comet 2: F = 5 (= 7 - 1)from Comet 3: C to Comet 3: E = 4 (= 7 - 1)from Comet 4: D to Comet 4: D = 3 (= 7 - 1)from Comet 5: E to Comet 5: C = 2 (= 7 - 1)from Comet 6: F to Comet 6: B = 1 (= 7 - 1)from Comet 7: G to Comet 7: A = 0 (= 7 - 1)Comet number amount of Comet in use Comet address used from the PC Comet identification (PC receives this address)




Comet Terminal Page 11

## 4.5.1. Data from the Comet:

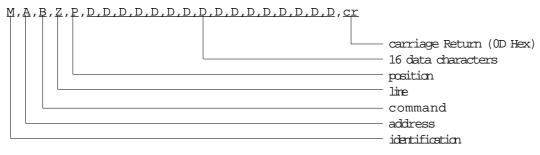
Each data string from the Comet starts with the place identification. The place identification depends on the connecting position of the Comet at the Junction Box. The place identification tells the PC from which Comet the data string comes. The place identification starts with "A" (Comet plugged at Junction Box socket 1) and goes up to "J" (Comet plugged at Junction Box socket 10).

Each program has its own data protocol:



## Example:

| 18,5 points form judge 4 (Comet at Junction Box socket 4)                             |                      |  |  |  |  |
|---------------------------------------------------------------------------------------|----------------------|--|--|--|--|
| 1 1 1 1 1 1 1 1 1 2 2 2                                                               | Amount of characters |  |  |  |  |
| 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2                                           | from 1 to 22         |  |  |  |  |
|                                                                                       |                      |  |  |  |  |
| D, , , , , , , , , , ,:, ,:,1,8,,5, ,LF,CR                                            | Data line            |  |  |  |  |
|                                                                                       |                      |  |  |  |  |
| 127,5 m width (Comet at Junction Box connection 6)                                    |                      |  |  |  |  |
| 1 1 1 1 1 1 1 1 1 2 2 2                                                               | Amount of characters |  |  |  |  |
| 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2                                           | from 1 to 22         |  |  |  |  |
|                                                                                       |                      |  |  |  |  |
| F, , , , , , , , , , ,:, ,1,:,2,7,,5, ,LF,CR                                          | Data line            |  |  |  |  |
|                                                                                       |                      |  |  |  |  |
| Speed is 97,56 km/h (Comet at Junction Box connection 7)                              |                      |  |  |  |  |
| 1 1 1 1 1 1 1 1 1 2 2 2                                                               | Amount of characters |  |  |  |  |
| 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2                                           | from 1 to 22         |  |  |  |  |
|                                                                                       |                      |  |  |  |  |
| G, , , , , , , , , , ,:, ,:,9,7,,5,6,LF,CR                                            | Data line            |  |  |  |  |
|                                                                                       |                      |  |  |  |  |
| Program Schanze: Input FLG:1,5; LDG:0,0; STRZ:00 (Comet at Junction Box connection 1) |                      |  |  |  |  |
| 1 1 1 1 1 1 1 1 2 2 2                                                                 | Amount of characters |  |  |  |  |
|                                                                                       |                      |  |  |  |  |
| 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2                                           | from 1 to 22         |  |  |  |  |
| 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2                                           | from 1 to 22         |  |  |  |  |


Page 12

#### 4.5.2. Data from the Personal Computer (PC):

The PC cannot only receive data, but also control the Comet Terminals. The data string form the PC starts always with a M (= master) as identification.

Attention: Orders from the PC to one or all Comet must always receive an answer from the Comet. It is not allowed to send a new order to the Comet, before you receive the answer of the order before.

#### Protocol:



#### Identification

The identification form the PC is always "M" (= master).

#### Address:

Addresses the Comet for which the data are sent. It is possible to address all Comet or a single Comet in the ring. If you address a single Comet you have to calculate the address out of the "amount of Comet in use minus position of the addressed Comet". With the ASCII character A to J it is possible to address a individual Comet. All Comet take the data string, if you use "R" as address (see page 10, point 4.5.).

```
Example: 7 Comet in use (5 Schanze, 1 Distance, 1 Speed)
Address Comet 5: 7 - 5 = 2 (address is C)
Address Comet 3: 7 - 3 = 4 (address is E)
Address all Comet: address is "R"
```

#### Commands:

Commands are executed by the target Comet. There are commands which are transmitted immediately with carriage return (OD Hex.), as well as commands with more information (line, position, data).

C .... Clear ...... input fields of the Comet will be set on zero, and messages from the PC will be cleared. An input lock is finished after the clear command

```
\texttt{M}, \texttt{R}, \texttt{C}, \texttt{cr} \dots \texttt{clear} all Comet \texttt{M}, \texttt{D}, \texttt{C}, \texttt{cr} \dots \texttt{Clear} Comet 4 (at a total amount of 7 Comet)
```



Page 13

I ..... Info ............. writes a text in the first line of the display. In the second line it writes "CONTINUE WITH \*". The Comet stops now until you press the "\*"-key. The text that you write on the display is sent as data byte with the command (max. 16 characters).

T .... Text writes a text at any place of the Comet display. The text is sent as data byte together with the command. Other inputs are not blocked.

```
M,R,T,1,A,S,t,a,r,t,n,u,m,b,e,r,,1,3,cr
M,E,T,2,I,S,u,r,e,?,cr
                  minimum input that it takes the command
M,R,T,1,A,cr
```

The fourth caracter selcts the line:

- line 1
- 2 line 2

The fifth caracter must be one of the following characters:

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O

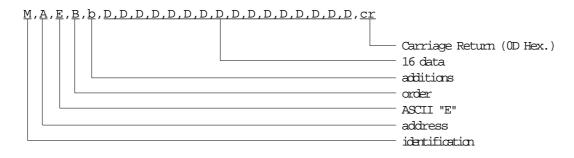
With this caracter you can choose the place were you want to set the text. Each line of the Comet has 16 caracters.

A..... caracter 1 of the line B..... caracter 2 of the line C ..... caracter 3 of the line F ..... caracter 6 of the line O ..... caracter 15 of the line

M,R,T,1,A,S,t,N,o,,1,3,cr

Text start at position 1, upper line, information for all Comet Text starts at position 9, lower line, M,D,T,2,I,S,u,r,e,?,crinformation for Comet 4 (7-3=4)

# Comet Te


Comet Terminal Page 14

# 4.5.3. Orders to program the input fields for the program "Computer":

If you use the Comet Terminal program "Computer" you can program the Comet form the PC with the following orders:

- The address works like in the other programs, then follows the order and the data.

#### General:



After the identification and address it needs the ASCII character "E". After the "E" it follows the order, addition, and data.

#### Order:

R .... Reset ...... initialisation of the Comet , all input fields and text will be cleared  $M,R,E,R,cr \label{eq:mass}$ 

I ..... Init ...... sets input fields to zero

with a addition you can address the input field

e.g.: set input field 3 to zero

 ${\tt M,R,E,I,3,cr}$  sets field 3 form all Comet to zerro

M,C,E,I,3,cr sets field 3 form Cornet with address C to zero

set all input fields to zero

M,R,E,I,O,cr sets all fields form all Comet to zerro

After the I it needs a blank or 0,1,2,3,4, or 5. If none of this caracters comes on that position it will ignore the order. Blank or 0 means that all fields are set to zero.

C.... Clear.....as "I" (init) but all input sections are set on blank instead of zero

M,R,E,C,0,cr all fields from all Comet are set to blank



S.... Set .....set input fields

You must set the input fields line by line. After the "S" it needs always the line number (1 or 2) and then 16 data bytes (you must input all 16 data bytes even if it is blank). The end (byte 17) is always a carriage return (0D Hex.). The input fields are identified by numbers. The position is the one that you set with the set order.

## Example:

In line 1 it needs on position 4 a number with 3 digit, and on position 9 a time.  $M,R,E,S,1,\dots,1,1,1,1,\dots,2,2,\dots,2,2,\dots,2,2$ 

With the key "B" jumps the cursor form input field to input field. With the text command you can set between the input fields text.

M,R,T,1,A,N,o,:,,,,,,,:,,:,,

Set all fields of all Comet to zero:

M,R,C,cr

The above two program lines show the following data on the display:

No:000 00:00:00

#### Example:

#### Comet A shows:

Judge 1: 00.0 send with \*

#### Comet B shows:

Judge 2: 00.0 send with \*

#### Comet C shows:

Judge 3: 00.0 send with \*

## Comet D shows:

Judge 4: 00.0 send with \*

#### Comet E shows:

Judge 5: 00.0 send with \*